

New Results on the B_c^- Meson at the Tevatron

M. A. Rahaman^a*

^aUniversity of Pittsburgh, Pittsburgh, PA 15260

We present recent results on B_c^- meson from the Tevatron. The B_c^- meson has been observed in semileptonic decays, $B_c^- \to J/\psi l^- \nu X$, both by CDF and DØ experiments at a significance larger than 5σ . The DØ experiment has used the candidates in $B_c^- \to J/\psi \mu^- \nu X$ decay to extract the mass and lifetime of B_c^- meson. The CDF experiment has used both electron and muon channel candidates in $B_c^- \to J/\psi l^- \nu X$ decays to measure the relative production times branching ratio with respect to $B^- \to J/\psi K^-$ decay and also measured the lifetime of B_c^- meson in electron channel as $\tau(B_c^-) = 0.463^{+0.073}_{-0.065} \pm 0.036$ ps. The CDF experiment has also observed $B_c^- \to J/\psi \pi^-$ decay with a significance exceeding 6.5σ and has measured the mass of B_c^- meson as $M(B_c^-) = 6276.5 \pm 4.0 \pm 2.7 MeV/c^2$.

1. Introduction

1.1. Tevatron in Run-II

The Run-II data taking period at the Fermilab Tevatron collider began in 2001 with proton antiproton collisions at energy $\sqrt{s}=1.96$ TeV. Since then data corresponding to a total integrated luminosity of about 1.6 fb⁻¹ have been collected. It has also recorded highest ever instantaneous luminosity in any such hadron collider. The two interaction regions of Tevatron are instrumented with the CDF [1] and DØ [2] detectors. The state of art silicon tracking system at both CDF and DØ detectors enable to reconstruct secondary vertices which is important ingredient to identify B hardron decays.

The Tevatron is a good source of all B hadrons species including those not easily accessible at B factories. The relatively large $b\bar{b}$ production cross section is an advantage to study B physics at the Tevatron. However, the total inelastic cross section is proportionally large (10^3) as well. This makes it necessary to collect data with specific triggers. In particular, several of the B_c^- [3] decay modes contain a J/ψ in the final state and J/ψ is one of the most easily reconstructable decays owing to an efficient dimuon trigger giving high purity $J/\psi \to \mu^+\mu^-$ reconstruction both at CDF and DØ experiments.

1.2. The B_c^- Properties

The B_c^- meson is the ground state of b and \bar{c} quarks which makes it a unique system with two heavy quarks of different flavors. The presence of both such quarks impacts on the the production, decay and mass properties of the B_c^- meson. Both color singlet and color octet states contribute to the production of B_c^- meson and separating the contributions suggests a softer p_T distribution of B_c^- compared to the other Bmesons [4]. The B_c^- meson is expected to have decay properties that include both a shorter clike lifetime and a large number of possible final states [5]. Finally, the measurement of the mass of B_c^- is interesting to compare with theoretical predictions using potential models [6] and, more recent, the lattice QCD calculations [7]. All of these theoretical predictions require testing through experimental measurements.

1.3. The B_c^- in Run-I

The observation of $20.4^{+6.2}_{-5.5}$ signal events in a combined electron and muon channel by CDF at Run-I marked the discovery of the B_c^- meson [8]. From these events, CDF measured the mass and lifetime of B_c^- as $M(B_c^-)=6.4\pm0.39\pm0.13~MeV/c^2$ and $\tau(B_c^-)=0.46^{+0.18}_{-0.16}\pm0.03$ ps respectively. In addition, the relative production cross section times the branching ratio of $B_c^- \to J/\psi l^- \nu X$ with respect to $B^- \to J/\psi K^-$ decay was determined as

^{*}Presented on behalf of the CDF and DØ collaborations with support from the U.S. Department of Energy

M. A. Rahaman

 $\mathcal{R}=0.132^{+0.041}_{-0.037}\pm0.031^{+0.032}_{-0.020}$ with the assumption of hard p_T spectrum. These measurements were crude, yet were indication that the study of B_c^- properties would be very interesting at Tevatron Run-II.

2. Measurements of the B_c^- properties

At Run-II both CDF and DØ experiments have studied the B_c^- properties. The results are reported in the following sections.

2.1. Results from DØ experiment

The DØ experiment has analyzed data of total integrated luminosity of 0.21 fb⁻¹ in three muon final state, $B_c^- \rightarrow J/\psi \mu^- \nu X$, where $J/\psi \rightarrow \mu^+\mu^-$. The DØ experiment observes 231 candidates including signal and residual backgrounds [9]. The backgrounds are studied in a J/ψ + track control sample. The backgrounds are broadly divided in two categories: prompt background coming from prompt J/ψ plus fake muon and non-prompt background coming from J/ψ from B mesons plus fake muon. Monte Carlo methods are used to perform a combined likelihood (\mathcal{L}) fit with or without the assumption of signal component. The background only fit is poor compared with the addition of signal component. The difference in $-2log\mathcal{L}$ between signal + background fit and background only fit is 60 for 5 degrees of freedom. Figure 1 shows the mass and pseudo-proper time distributions for B_c^- candidates in DØ data with contribution of prompt and non-prompt backgrounds.

The fit, where signal component is included, estimates $95\pm12\pm11$ signal candidates. A combined likelihood fit is performed under a variety of mass hypothesis to extract mass and lifetime of B_c^- meson. A full 2D fit to the $-2log\mathcal{L}$ returned by the fit at different mass hypothesis estimates the mass and lifetime as $M(B_c^-) = 5.95^{+0.14}_{-0.13} \pm 0.34~MeV/c^2$ and $\tau(B_c^-) = 0.448^{+0.123}_{-0.096} \pm 0.121$ ps respectively.

2.2. Results from CDF experiment

CDF has analyzed data in semileptonic decays, $B_c^- \to J/\psi l^- \nu X$, both electron and muon channels, and also in the hadronic decay, $B_c^- \to J/\psi \pi^-$, where $J/\psi \to \mu^+ \mu^-$ and $l=e,\mu$.

Figure 1. The invariant mass (upper) and pseudo-proper time (lower) distributions of $B_c^- \to J/\psi \mu^- \nu X$ decay in DØ data with signal and background contributions.

2.2.1. $B_c^- \to J/\psi l^- \nu X$ decay in CDF

In the semileptonic decays, $B_c^- \to J/\psi l^- \nu X$, CDF has used data of total integrated luminosity of 0.36 fb⁻¹ where about 2.7 M J/ψ decays are selected. A third track, identified as muon or electron, is added to J/ψ to reconstruct the B_c^- meson.

In $B_c^- \to J/\psi \mu^- \nu X$ decay, a total of 106 candidates are observed including signal and backgrounds [10]. Both J/ψ + track and $B^- \to J/\psi K^-$ samples are used to understand the background compositions. The fake muon background is estimated from the J/ψ + track sample where the third track is misidentified as muon. The fake probability is estimated by studying $D^0 \to K^- \pi^+$ and $\Lambda^0 \to p \pi^-$ samples. The composition of K, π and p in J/ψ + track sample are estimated using PID quantities (ToF and dE/dX) at the CDF. The number

Figure 2. The invariant mass distributions of $J/\psi\mu$ in CDF data with background contribution.

of fake muons is then calculated by multiplying the fake probability with the composition. The $b\bar{b}$ background is estimated using Pythia Monte Carlo normalized to $B^- \to J/\psi K^-$ data. Finally, the sideband events of J/ψ are used, to estimate the contribution coming from fake J/ψ events. These three background processes are estimated to contribute approximately 16 (fake- μ), 13 ($b\bar{b}$) and 17 (fake J/ψ) events resulting in a 5.2 σ excess of signal consisting of 60.0 \pm 12.6 candidates. Figure 2 shows the invariant mass distribution of $J/\psi\mu$ obtained from CDF data with background contribution. The production cross section times branching ratio of $B_c^- \to J/\psi \mu^- \nu X$ decay with respect to $B^- \to J/\psi K^-$ decay is measured as, $\mathcal{R}=0.249\pm0.045\pm0.069^{+0.082}_{-0.033}$ with $p_T(B)>4$ GeV/c and |y|<1.

CDF has also studied the $B_c^- \to J/\psi e^- \nu X$ decay and selected a total 179 candidates including signal and backgrounds [11]. The backgrounds in this channel are further complicated by the presence of conversion photon in addition to the fake- $e,\,b\bar{b}$ and fake- J/ψ backgrounds. During the reconstruction, the events which are tagged to be as photon conversion are rejected. The residual conversion is estimated from the J/ψ + tagged

sample using the conversion finding efficiecy obtained from Monte Carlo. The conversion background contributes approximately 15 out of total 64 background events resulting in an excess of $114.9 \pm 15.5 \pm 13.6~B_c^-$ signal candidates which corresponds to a significance of 5.9σ . The measurement of the production cross section times branching ratio of $B_c^- \rightarrow J/\psi e^- \nu X$ decay with respect to $B^- \rightarrow J/\psi K^-$ decay is measured as, $\mathcal{R} = 0.282 \pm 0.038 \pm 0.035 \pm 0.065$ with $p_T(B) > 4~\mathrm{GeV/c}$ and |y| < 1.

The lifetime of the B_c^- meson is also measured in the $B_c^- \to J/\psi e^- \nu X$ decay mode [12]. To have convenient parameterization of decay length, the lifetime related requirements have been relaxed during event selection compared to the \mathcal{R} analysis. The decay length is corrected by a factor, $K=(m(B)/p_T(B))/(m(J/\psi e)/p_T(J/\psi e))$, obtained from Monte Carlo to account for the missing particles. Figure 3 shows the psedoproper decay length distribution obtained from CDF data with signal and bacground contributions. From an unbinned likelihood fit, the lifetime of the B_c^- meson is measured as $\tau(B_c^-)=0.463^{+0.073}_{-0.065}\pm0.036$ ps.

Figure 3. The pseudo-proper decay length distributions of $B_c^- \to J/\psi e^- \nu X$ decay in CDF data with signal and background contributions.

4 M. A. Rahaman

2.2.2. $B_c^- \to J/\psi \pi^-$ decay in CDF

CDF reported initial evidence of $B_c^- \to J/\psi \pi^-$ decay with 0.36 fb⁻¹ [13]. Recently, CDF has analysed data of total integrated luminosity of 1.1 fb⁻¹ in $B_c^- \rightarrow J/\psi \pi^-$ decay using an independent analysis and has measured the mass of B_c^- meson [14]. The analysis cuts are optimized in an unbiased way on the reference $B^- \to J/\psi K^-$ decay using first 0.36 fb⁻¹ of data and the sideband background events below 5.5 GeV/c^2 . The optimized cuts are then applied to analyse $B_c^- \to J/\psi \pi^-$ decay. The selection requirements include the K candidate must have an impact parameter significantly displaced from the primary vertex while simultaneously pointing toward the vertex formed by the two muons of J/ψ . A small excess of events is observed in this analysis with 0.36 fb⁻¹ data and with accumulation of full 1.1 fb⁻¹ data, the excess becomes more significant. A fit to the data of 1.1 fb⁻¹ with Gaussian signal and linear background gives $49.1 \pm 9.7 \ B_c^-$ signal events over a background of 34.1 events which corresponds to a significance larger than 6.5σ based upon simulations that include random fluctuations over a wide search window. Figure 4 shows the invariant mass distribution of $J/\psi\pi$ candidates in a mass window 5.6 to 7.2 GeV/c². An unbinned likelihood fit is used to extract the mass of the $B_c^$ meson as $M(B_c^-) = 6276.5 \pm 4.0 \pm 2.7 \ MeV/c^2$ compared to the prediction from lattice QCD calculation of $M(B_c^-)_{LAT} = 6304 \pm 12^{+18}_{-0} \ MeV/c^2$.

3. Summary and Conclusions

Both CDF and DØ experiments at Tevatron have studied the B_c^- meson properties from the RUN-II data. The DØ experiment has measured the lifetime and the mass of the B_c^- meson in tri-muon channel. The CDF experiment has analysed data in semileptonic decays both in e and μ channels and measured the production cross section times branching ratio with respect to $B^- \to J/\psi K^-$ decay and also measured the lifetime in e-channel. The mass of the B_c^- meson has been measured in hadronic decay channel which is already challenging the prediction of Lattice QCD calculation.

Figure 4. The invariant mass distributions of $J/\psi\pi$ in CDF data of 1.1 fb⁻¹.

REFERENCES

- D. Acosta et al., Phys. Rev. D 71, 032001 (2005).
- 2. V. M. Abazov et al., Nucl. Instrum. Methods, physics/0507191.
- 3. Charge conjugate mode implied.
- 4. C. H. Chang et al., Phys. Rev. **D** 71 074012 (2005).
- V. V. Kislev, Phys. Atom Nucl. 67, 1559 (2004).
- S. Godfrey Phys. Rev. **D** 70 054017 (2004);
 E. J. Eichten and C. Quigg, Phys. Rev. **D** 49 5845 (1994);
 W. K. Kwong and J. L. Rosner, Phys Rev **D** 44 212 (1991).
- 7. I. F. Allison et al., Phys, Rev. Lett. **94** 172001 (2005).
- F. Abe et al., Phys. Rev. Lett. 81 2432 (1998);
 F. Abe et al., Phys. Rev. D 58 112004 (1998).
- 9. DØ Collaboration, DØ Note 4539-CONF.
- 10. CDF Collaboration, CDF Note 7649.
- 11. CDF Collaboration, CDF Note 7926.
- 12. CDF Collaboration, A. Abulencia et al., Phys. Rev. Lett. **97** 012002 (2006).
- CDF Collaboration, A. Abulencia et al., Phys. Rev. Lett. 96 082002 (2006).
- 14. CDF Collaboration, FERMILAB-CONF-06074-E (Apr 2006).